Dialogue Relation Extraction using Dialogue Graph (HCLT 2022)
Authors
- Jungwoo Lim, Junyoung Son, Jinsung Kim, Yuna Hur, Jaehyung Seo, Yoonna Jang, JeongBae Park, Heuiseok Lim
Abstract
관계추출은 문서 혹은 문장에서 자동으로 엔티티들간의 관계를 추출하는 기술로, 비정형 데이터를 정형데이터로 변환하기에 자연어 처리 중에서도 중요한 분야중 하나이다. 그 중에서도 대화 관계추출은 기존의 문장 단위의 관계추출과는 다르게 긴 길이에 비해 적은 정보의 양, 빈번하게 등장하는 지시대명사 등의 특징을 가지고 있어 주어와 목적어 사이의 관계를 예측하기에 어려움이 있었다. 본 연구에서는 이러한 어려움을 극복하기 위해 대화의 특성을 고려한 대화 그래프를 구축하고 이를 이용한 모델을 제안한다. 제안하는 모델은 상호참조 정보와 문맥정보를 더 반영한 그래프를 통해 산발적으로 퍼져있는 정보를 효율적으로 수집하고, 지시대명사로 인해 어려워진 중요 발화 파악 능력을 증진시켰다. 또한 이를 실험적으로 보이기 위하여 대화 관계추출 데이터셋에 실험해본 결과, 기존 베이스라인 보다 약 10% 이상의 높은 F1 점수를 달성하였다.
Check out the This Link for more info on our paper