A Dog Is Passing Over The Jet? A Text-Generation Dataset for Korean Commonsense Reasoning and Evaluation (Findings of NAACL 2022)

Authors

  • Jaehyung Seo, Seounghoon Lee, Chanjun Park, Yoonna Jang, Hyeonseok Moon, Sugyeong Eo, Seonmin Koo, and Heuiseok Lim.

Abstract

Recent natural language understanding (NLU) research on the Korean language has been vigorously maturing with the advancements of pretrained language models and datasets. However, Korean pretrained language models still struggle to generate a short sentence with a given condition based on compositionality and commonsense reasoning (i.e., generative commonsense reasoning). The two major challenges are inadequate data resources to develop generative commonsense reasoning regarding Korean linguistic features and to evaluate language models which are necessary for natural language generation (NLG). To solve these problems, we propose a text-generation dataset for Korean generative commonsense reasoning and language model evaluation. In this work, a semi-automatic dataset construction approach filters out contents inexplicable to commonsense, ascertains quality, and reduces the cost of building the dataset. We also present an in-depth analysis of the generation results of language models with various evaluation metrics along with human-annotated scores.

Check out the This Link for more info on our paper. Code and dataset are available in Here